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Abstract: There is no deep mathematics here, but
a student project collected and collated difficult to find
information on this topic. Moreover, we discovered a few
new twists. All together, this can help us interpret the
“Interaction” of KdV solitons.




Originally derived over 100 years ago to model surface waves in a canal.

Category in the Mathematics Classification Scheme (MCS2000) called “KdV-like
equations” (35Q53) and frequently paired with the adjective “ubiquitous”

Completely Integrable: we can write exact solutions.

It has “hump-like” travelling wave solution:

wi(z,t) =ui(z, t; k, §) = 2k*sech’(n(z, t; k, €))
n(z,t:k,&)=kx + Kkt + ¢

There are also n-soliton solutions showing nonlinear superposition of a
collection of these “humps”:



KdV 2-Soliton
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Looks similar to a sum of two travelling waves, but it is not! Note:

» Height at £ = 0 not sum of heights. Trajectories are “bent” at time of collision.

Philosophical Question: Does the tall one pass through the small one, or

does the trailing one pass its momentum to the first?




A Decomposition (BKY 2006): us = f1 + f5

Consider f; and f> suchthat us(x,t) = fi(x,t)+ fo(x,t). Clearly, there are
many ways to do this, but some are more interesting than others. The following
Is original to us
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Yoneyama’s Speed Preserving Decomposition (1984)

fi = 2ki(g(m, m))asech®[g(m1, )] fo = 2ka(g(n2, m))asech?[g(n2, m)]
B 1+ €* exp(2n;)
g(mi,m;) = mi + 5111 ( T+ exp(2n;) ) :

Oldest published decomposition, argued that solitons are attractive. Note that f;
has a zero near peak of fs.
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1 Properties: speed preserving,
fl 0 non-negative (f; = 0)
formula pretty nice
8 4 f : : further developed by Moloney-Hodnett,

4 8 Campbell-Parks, Fuch



Miller-Christiansen: Order and Mass
Preserving

Inspired by Bowtell-Stuart’s singularity analysis, present decomposition satisfying:

fr=4¢"/7° (ki(k1 + ko)?k1 — koe ™™ + 2(ky + ko)® + 2k5e™™ + Ky (k1 + ko)e™™)
fo :4/72(k1(/c1 + ko)e ™ 4 2k§e—2m +2(k1 — ko)® + k1 (k1 — ka)e™™).
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4 8 formulas given here for first time!




Nguyen’s “Ghost” Solitons

“Ghosts” created at collision travel ahead of solitons. Creates decomposition based
on eigenvalue factorization of 7:

fl = 2832: IOg (62771 + 62772 + 26262(771+772) . ﬁ)

fo= 282 log (62771 + 22 -+ 26262(771+772) 4 ﬁ)
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12 —4 | 4 8 Not spacetime symmetric!



Vain Remarks

Note that only our decomposition has all three of these “soliton like” properties:

e All of its elements are all non-negative, taking only strictly positive values
when the parameters and variables are real.

e The set itself is closed under the involution * — —x and ¢ — —{, which
IS to say that if one is watching a KdV soliton interaction or the same thing
shown in a mirror and run backwards in time.

e All of its elements take the form of quotients of finite linear combinations of
the form exp(ax + bt).

Next: Decompositions into Three or More Parts

UQ(xat) = fl(x,t) + fQ(I‘,t) + f3<x7t) NI



Argument #1: The timing of Argument #2: Lax’s original
asymptote intersections suggests paper discusses the number of local
“transfer boson”: . maxima in 2-soliton solution as

: function of the speeds k; and k».
All have 2 local maxima for almost
all times but:

o If ky/ky is large: there is a
moment with just one maximum.

e If ki/ky is small: two local
maxima at all times.

e In between: there is a moment
when there are three maxima.

exchange
boson
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Here, f3 vanishes for |[t{| — oo and has a unique local max V¢ located at
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Conclusions and Outlook

» Nguyen even has a decomposition of us with four parts!

» Question of how to identify the solitons before and after the interactions is not
well posed mathematical problem: one should not be expecting a definitive
answer.

» Other ways: Several authors have attempted to provide motivation for the order
preserving interpretation by reference to moving “point particles” associated to
singularities of solutions of the KdV equation.

» Making new out of old: If { f;} and {g;} are decompositions of us then so is
{F(z,t)f; + (1 — F(x,t))g;} for an arbitrary function F. (This dramatically
demonstrates the extent to which the decompositions fail to be unique.)

» Future goals: Decomposition of n-soliton; Decomposition of KP soliton, find
explicit connection between “exchange soliton” and process of “bosonization”.
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