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ABSTRACT. The Calogero model in a harmonic potential is known to be an
integrable particle system exhibiting an unusual form of duality. Following a
brief overview of the previous work relating the action-angle duality of particle
systems to bispectrality, this paper applies the rank one matrix method that
has proved so successful in that case to this other form of duality. In particular,
the particles are found as eigenvalue dynamics for flows on a pair of manifolds
of matrix pairs satisfying a rank one condition (one manifold for each possi-
ble sign of the coupling constant). Since the Jordan form of the matrices is
not restricted, this allows the continuation of the dynamics through collisions
where the Hamiltonian is undefined. Moreover, several simple algebraic maps
between these manifolds are shown to have dynamical significance, including
one which corresponds to the duality.

1. Introduction

1.1. General Remarks on Duality and Bispectrality. (This section rep-
resents a brief summary of the contents of my talk from the session at the 2012 Joint
Mathematics Meeting in Boston for which this volume records the proceedings. It
also serves as motivation for the new material discussed beginning in Section 1.2.)

Duality is an interesting phenomenon wherein two seemingly different questions
turn out to be mathematically equivalent. A simple example is the equivalence be-
tween selecting k or n—k objects from a set of n objects. A similar but conceptually
more difficult one is the equivalence in mathematical physics between k electrons
in a “Fermi sea” and the situation in which all but k possible energy states are
filled by positrons. (This is sometimes referred to as a “particle-hole duality”. See,
for example, [17].) Such dualities can be useful when they help us replace a diffi-
cult computation with an equivalent simpler one, but also lead to the philosophical
question of whether they indicate a fundamental equivalence between the two situ-
ations at an existential level as well. (E.g. is there really a difference between the
presence of an particle and the absence of its anti-particle, or is it just a matter of
interpretation?)

A standard duality in classical integrable particle systems is the so-called “action-
angle duality”. An integrable particle system can be identified by its action-angle
map between the symplectic manifold in which it “lives” and another in which
its dynamics simplifies. However, pushing simple dynamics on the first manifold
forward through the action-angle map produces dynamics in the image which are
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simplified by the inverse of the map. In this way, integrable systems have a natural
duality pairing systems whose action-angle maps are inverses. For example, the (ra-
tional) Calogero-Moser system has an action-angle map which is an involution [2]
and hence that system is self-dual, but a less trivial example is the duality between
the Ruijsenaars-Schneider and the hyperbolic Calogero-Moser systems [19].

A major theme in my research has been the connection between the action-
angle duality of integrable particle systems and bispectrality. A linear operator
L acting on functions of the parameter(s) z is said to be “bispectral” if one can
find an eigenfunction f(z,z) satisfying Lf = p(z)f with an eigenvalue depending
on the spectral parameter(s) z and also an operator A acting on functions of z
such that Af = w(x)f [9]. (Here it is assumed that L is independent of z, A is
independent of z and both p and 7 are non-constant functions.) Although there
is no obvious dynamic content to the definition, bispectrality has been linked to
integrable systems since it was first introduced by Duistermaat and Griinbaum in
a paper that connected it to the KdV equation [5].

When a classical particle system is quantized, its Hamiltonian becomes an op-
erator. Ruijsenaars observed that letting L and A be the Hamiltonians of a classical
particle system and its dual partner respectively produced operators satisfying the
eigenvalue equations of bispectrality with a common eigenfunction [19]. This has
essentially become the definition of duality for quantum systems [6, 10, 14].

More mysteriously, classical duality also seems to be manifested in the form
of bispectrality in an entirely different way: the particle systems are associated
to the dynamics of a soliton equation in the special case that the Lax operator
is bispectral, and the exchange of the Lax operator with its bispectral partner is
the action-angle map between the particle systems. This was first observed for the
(rational) Calogero-Moser system [11, 20]. With only that one example, it certainly
was reasonable to think that the relationship between action-angle duality and
bispectrality in this case was merely a coincidence. However, I have been pursuing
this as a “program” since that time [12] and have collected enough examples to
hopefully convince others that there is something interesting going on here that is
not yet fully understood.

My talk in this session was an overview of the present status of this research
program with special emphasis on two recent developments each of which extended
the duality/bispectrality correspondence to an area in which there was previously
reason to doubt it would work.

Until recently, all examples of duality of classical particle systems being man-
ifested as bispectrality for Lax operators involved self-dual systems. With the
intention of using these constructions as a basis for extending the correspondence
to the (non-self-dual) case of the duality between the Ruijsenaars-Schneider and
hyperbolic Calogero-Moser systems I first demonstrated that KP solitons are bis-
pectral [13] and with Michael Gekhtman applied the rank one matrix formulation
to KP solitons [16]. Unfortunately, I was unable to see a way to connect them to
the action-angle map relating these two particle systems and began to doubt that it
could be done. I am therefore pleased to report that Luc Haine [8] did indeed show
that the action-angle duality of these systems is manifested in the bispectrality of
KP solitons under translational operators in the spectral parameter as in [13] and
is nicely described using “almost-intertwining” matrices as in [16].
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Another new development concerns the connection between bispectrality for
matriz differential operators and the self-duality of the spin generalization of the
Calogero-Moser system. Until recently it seemed unlikely that the correspondence
would continue to be found in this case, since previous investigation had found
little to say about bispectrality for such matrix operators. Merely replacing the
scalar coefficients with matrix coefficients on differential operators resulted in a
comparatively small and uninteresting set of solutions to the bispectral problem.
However, Maarten Bergvelt, Michael Gekhtman and I fully generalized the bispec-
trality /duality correspondence from the scalar case to the spin particle system [3].
(In fact, our result here was just a tiny bit stronger in regard to particle collisions
and so even produced new results in the scalar case.) A simple modification to
the bispectral problem under consideration turned out to be an essential step: it
is necessary to view the matrix operators in the spectral parameter as acting from
the right rather than the left in order to preserve the richness of the bispectral
problem.

That the action-angle duality of integrable systems can be manifested in the
form of bispectral Lax operators for soliton equations even in the non-self-dual and
matrix cases lends further weight to the two main unanswered questions in this
research program: Can we prove a theorem that would demonstrate the general
equivalence of the bispectral involution (exchanging L and A) and action-angle
maps for classical integrable systems? Is it a coincidence that duality is manifested
as bispectrality at both the quantum and classical levels?

For more details regarding my talk on the correspondence between bispectrality
and action-angle duality of particle systems, I recommend that the interested reader
obtain a copy of my talk, which is presently available on my Website [15]. However,
at this point the topic of the paper will change to a different sort of duality.

1.2. Calogero Systems Constrained by a Harmonic Potential. Con-
sider the classical dynamical system with Hamiltonian

n

1 . ~?
(1.1) Huem = 3 Z(Jﬁ? +w2x§) — Z

= = (@ —aw)?

where, of course, x; are the positions of the n particles of unit mass and &; = %xj
are their momenta. The number + is the “coupling constant” and w determines the
strength of an external harmonic potential. If all of the parameters take real values
and w is non-zero then the dynamics are completely periodic and bounded [4, 21].
(In the case w = 0, this is the (rational) Calogero-Moser particle system whose
self-duality is manifested in the bispectrality of rational KP solutions [11, 20] as
described above.)

A different sort of duality for the harmonic case is considered by Abanov,
Gromov and Kulkarni [1]. In particular, they show that if {z1,...,z,} are governed
by this Hamiltonian then there exists another collection of functions {z1,...,2zm}
which in in addition to having dynamics governed by the same Hamiltonian, also
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satisfies the coupled equations

n

1 1
1.2 ri —iwr; = —1 ) 1< <
(1.2) T — Wz, Z'yzxj_xk—i—z*y p—, <j<n
Py k=1
(1.3) Zj —iwz; = W%zj—z _sz]—xk I1<j<m.

They describe this as a duality, referring to {z;} as a particle system dual to {z;},
and observe that the equations are symmetric under the exchange of particle posi-
tions and momenta if one also replaces the coupling constant v by —~.

Abanov et al specifically raise the question of how this duality might be related
to bispectrality and to the action-angle duality discussed in Section 1.1. Following
Wilson [20], we begin such an investigation by finding the particle systems gov-
erned by (1.1) as the eigenvalue dynamics associated to a flow on a manifold of
matrix pairs satisfying a rank one condition. In fact, since the exchange of the
coupling parameter v with its additive inverse —+ is apparent in the duality under
investigation (see the last sentence of the previous paragraph), we will consider two
different manifolds, one associated to v and one to —v, and algebraic maps between
them. The main result below is Theorem 5.6 which identifies of one of these maps
with the duality in (1.2) and (1.3). The paper then concludes with an outline of
open questions and steps that ought to be taken to address them in future research.

1.3. Notation. Let w,y € C and n € N be fixed non-zero parameters. Let
C, xn denote the set of n x n matrices with complex valued entries. The symbol
i will be used only to denote the imaginary number /—1 and I = I,, represents
the n x n identity matrix. The vector e € C" satisfies e’ = (1,...,1) so that
E =ee € C,x, is the matrix with every entry equal to 1. The parameter ¢ is to
be considered a free variable taking non-zero values and having the interpretation of
a coupling constant, so that whenever the particle system (1.1) is being considered,
g will take either the value v or —7.

2. Matrix Pairs Satisfying a Rank One Condition
Let hC'M(n,g) denote the set of matrix pairs
hCM(n,g) = {(X,L) € Cpoxn, X Cpxn, | rank(i[L, X]| + gI,,) = 1}.

For example, if {x1,22,...,2n,21,...,2n} are 2n numbers with z; # x5 whenever
j # k then for the matrices X and L defined by

ig

(21) Xjk = xjéjk ij = x'jéjk + (]. — 5jk)
Tj — Tk

the matrix ¢[L, X] + gI,, = gF is the square n x n matrix with every element equal
to g. Hence, (X, L) € hCM(n,g).

We say (X, L) ~ (X, L) for two elements of hC'M (n, g) if there is a matrix G €
GL(n) such that X = GXG~! and L = GLG~'. Let hCM (n, g) be the quotient of
hCM (n,g) modulo this equivalence relation. Note, for example, that if (X', L) €
hCM(n,g) and the eigenvalues of X’ are distinct then there is a representative
(X, L) of the equivalence class of (X', L) in hCM (n, g) in the canonical form (2.1).
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3. Harmonic Dynamics Restricted to hCM(n,g)
For matrices X = (X, L) € Cpyxn X Cpxyy define Qx = Q(x,) by the formula
1
(3.1) Qx(t) = cos(wt) X + — sin(wt)L.
w

For given n x n matrices X and L it is easy to see that Q(t) = Qx(t) is the unique
solution to the initial value problem

(3.2) O =—*Q) Q) =X  O)=L.

A central idea in integrable systems is that such simple motion in a high dimensional
space (in this case, n?-dimensional) can project to seemingly complicated dynamics
when restricted to a lower dimensional manifold. For instance, one can find the
dynamics of the particle system (1.1) by restricting this flow to hCM(n, g), but
first we must make sure such a restriction even makes sense.

THEOREM 3.1. Consider the vector field V on Cpxn X Cpxn defined by
V(X,L)=(L,~w?’X) X =(X,L) € Cpxn X Cpxn.

This vector field is tangent to hC' M (n, g) and induces the periodic flow (Qx(t), Qx (t))
where Qx 1is as defined in (3.1) above.

PROOF. It is a direct consequence of (3.2) that £Qx = L and
t=0
d - ; ) )
d—QX :Q)((O):—w Qx(O):—w X.
t " o
Moreover, since
. 1
[Qx(t),Qx(t)] = {Cos(wt)X + —sin(wt) L, —wsin(wt) X + cos(wt)L
w

= [cos(wt)X, cos(wt)L] + [w™ ' sin(wt)L, —w sin(wt) X]
cos?(wt)[X, L] — sin®(wt)[L, X]
= (cos®(wt) + sin*(wt))[X, L] = [X, L]

it follows that if rank(i[L, X] 4+ gI,) = 1 then (Qx(t), Qx(t)) is in hC'M(n, g) for
all ¢. 0

We are going to be interested in the dynamics of the eigenvalues induced by
this flow and so further define

n

(3.3) Ex ={z1(t),...,zn(t)} where det(Qx (t) — M) = H(x](t) —A).

Jj=1

It is important to note that £x = Ex» when X ~ X’ and so this map is well defined
on hCM (n,g). (A less important observation is that, despite the indexing which
is provided for notational convenience, the image of the map is defined only as an
unordered set.)
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FIGURE 1. Dynamics in the real case beginning with an initial
condition in canonical form (2.1). (See Example 3.3.)

PROPOSITION 3.2. For X = (X,L) € hCM(n,v) the eigenvalues Ex give the
positions of harmonic Calogero particles with dynamics determined by (1.1). In
particular, if Ex = {x1,...,xn} then

. 2y

_ 20 S —

(34) Tj= W § : (z — 7;)3
k#j

2
j=1...,n

s0 long as xy, # x; for k # j.

This result is proved by Perelomov [18] (see the discussion of “systems of
type V” spread throughout Chapter 3, and also references therein) in the real case
beginning with (X, L) in the form (2.1). In that case, the particle positions remain
distinct for all time. The same proof works in the complex case for the interval of
time around ¢ = 0 for which the x;’s are distinct. The general case then follows
from the earlier observation that £x depends only on the class of X in hC'M (n, g)
and so as long as the eigenvalues of X are distinct one may begin with (generally
complex valued) matrices in the canonical form (2.1).

ExAMPLE 3.3. A standard example in the case n = 2 would be to consider the
canonical matrices X and L from (2.1) withy =w = 2, z; = j—1 and &; = —(—1).
Then the eigenvalues of the matrix

Quxlt) = ( 1 sin(2t) —i sin1(2t) >

isin(2t) cos(2t) — 5 sin(2t)

are

xj(t) = 1_16 (8 cos(2t) + (—1)71/64 cos2(2t) — 32(2sin(4t) 4 5 cos(4t) — 5)) ,j=1,2.
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FIGURE 2. Dynamics exhibiting collisions from Example 3.4. The
real parts of 1 and x5 are plotted with solid lines and the imag-
inary parts are plotted with dashed lines. Note that since Ex is
defined as an unordered set for each value of ¢, there is not a
unique way to identify eigenvalues before and after a collision. In
particular, one can either interpret the results of the collisions as a
“bounce” in which the particles turn around after the interaction
or as if the particles pass through each other.

We can check that they are governed by (1.1) by verifying that for j # k one
2
has i; + (962_+k)3 + waj = 0. These are real valued functions exhibiting periodic
J
dynamics and no collisions, as illustrated in Figure 1.

EXAMPLE 3.4. On the other hand, if

0 1 1 1
X_<O 0) and L_<i’y 1)

then X = (X, L) € hCM(n,) even though X is not diagonalizable. In the case
v =w = 1 the matrix Qx(t) takes the form

Qx(t)—< sin(t)  cos(t) + sin() )

~\isin(t) sin(t)

with eigenvalues

25(t) = sin(t) + (—1)7y//isin®(t) + i sin(t) cos(t).

Again, since #; + (xﬁ%k)s +w?z; = 0 (when z1 # z2) the dynamics is determined
by (1.1), but the functions now take complex values and collisions occur, as shown
in Figure 2.
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4. Some Algebraic Maps Taking hCM(n, g) to hCM(n,—g)

Since the Hamiltonian (1.1) depends only on the square of the coupling constant
~, one should not be surprised to learn that solutions to the associated equations can
be constructed from hC' M (n, —) as well as from hCM (n,~y). This section clarifies
the relationship by introducing some obvious algebraic maps between them and
determining the dynamic significance.

THEOREM 4.1. The function Fy defined by the formula
Fl(Xa L) = (X7 _L)

is a map from hCM(n,g) to hCM(n,—g). The eigenvalues Ex = {x1,...,xn} and
Ep(x) ={Z1,...,Tn} (suitably reordered) are related by the formula x;(t) = Z;(—t)
for all values of t.

PRrROOF. For n x n matrices X and L, i[L, X|+ g, = —(i[-L, X]—gI,,) and so
if (X, L) € hCM(n, g) the left-side is a matrix of rank equal to 1, which means that
i[—L, X]—glI, is also a rank one matrix. Hence (X, —L) € hCM (n, —g). Moreover,
it follows from the fact that cosine is an odd function and sine an even function
that

Qx(t) = cos(wt)X + ésin(wt)L
= cos(—wt)X — ésin(—wt)[/

= cos(w(~0)X +  sin(w(~1))(~L) = Qra(~1)
and so Ex(t) = Ep, (x)(—1). O
THEOREM 4.2. The function Fy defined by the formula
Fy(X,L)=(X",L")

is a map from hCM(n,g) to hCM(n,—g). The eigenvalues Ex = {x1,...,x,} and
Epyx) = {Z1,...,Tn} (suitably reordered) are the same for all values of t.

PROOF. For nxn matrices X and L, i[L, X|+gl, = —(i[LT,X "] —gl,)" and
soif (X,L) € hCM(n,g) the left-side is a matrix of rank equal to 1, which means
that i[LT, X 7] — gI,, is also a rank one matrix. Hence (XT,LT) € hCM(n,—g).
Moreover, since Q x (t) = Q;2( x)(t) and the matrices related by transpose have the
same eigenvalues, Ex = Ep,(x)- 0

Combining these results with Proposition 3.2, we immediately have the corol-
lary:

COROLLARY 4.3. Let X € hCM(n,v) and let {x1,...,x,} = Ex be the corre-
sponding particle system governed by (1.1). The matriz pair Fo(X) € hCM (n, —7)
corresponds to the very same particle state (reflecting the fact that the Hamiltonian
is nvariant under the change v — —v), and the matriz pair F1(X) € hCM (n, —)
corresponds to a particle state with the same initial positions and orbits, but fol-
lowing the trajectories in the opposite direction (reflecting the invariance of the
Hamiltonian under time-reversal).
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So hCM (n,~) and hC'M (n, —v) produce the exact same set of solutions to the
dynamical equations associated to (1.1). Nevertheless, rather than viewing this as
an unnecessary redundancy, in order to reflect the change in sign of the coupling
parameter associated to the duality, the next section will encode the duality in the
form of another algebraic map from hC'M (n, ) into hCM (n, —v).

5. Duality

Let hCM™*(n,g) denote the open subset for which the matrix wX + iL is in-
vertible:

hCM*(n,g) = {(X,L) € hCM(n,g) | det(wX +iL) # 0}.

For X € hCM™(n, g) we define the action of the maps 9 and 9, by the formula

(5.1) 0N (X, L) = (X + g(wX +iL)"", L+ iwg(wX +4L)™")
and
(5.2) 0, (X,L)=Fo00].

The main result of this section will be to show that these definitions are closely
related to the concept of duality in Abanov, Gromov and Kulkarni [1].

LEMMA 5.1. The domain and range of the maps D;F and 0, are giwen by
05 hCM*(n,g) — hCM*(n, +g).
PROOF. Let (X', L") =0/ (X) for X € hCM(n,g). Then

(X', L] = [X+gwX+il) " L +ivg(wX +iL)™]
= [X,L]+iw[g(wX +iL) "', glwX +iL) ]
+[X, iwg(wX +iL) " + [g(wX +iL) "', L]
= [X,L]+0+ [wX,ig(wX +4iL)""| + [iL,ig(wX +iL)""]
= [X,L]+0+igwX +iL,(wX +iL)" '] = [X,L].

Hence, if i[L, X] + gI is a rank one matrix, so is i[L/, X'] + gI which shows that
(X',L") € hCM(n, g).
To see further that (X',L’) € hCM™*(n,g) we note that due to convenient
cancelation wX' +i¢L’ = wX + 1L and the latter is invertible by assumption.
Finally, the claim in the case of the negative superscript follows from an appli-
cation of Theorem 4.2. O

In the following lemma, it is important to keep in mind that the action of 0 g
is given by formula (5.1) with both occurrences of g replaced by —g’s.

LEMMA 5.2. The maps 0_, and 0, are inverses: for any X = (X,L) €
hCM*(n,g)

-, 00, (X) =4X.
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PROOF. For convenience, let us denote © = (wX +4L)~! so that we can briefly
write 9, (X) = (X,L) as X = (X +¢0)" and L = (L +iwg®)" . Then

07, 0,(X) = (X = g(wX +il) )T, (L - iwg(wX +il)™)T)
= (X +90—g(w(X +g0O) +i(L +iwgO)) "

L +iwg® — iwg(w(X + gO) +i(L + iwg®)) ")
= (X+90—g(wX +wg0 +iLl —wg0™" )™,

L+ iwgO — iwg(wX + wgO +iL — wg@)_l)
= (X+g®—g(wX—i—iL)_l,L—i—iwg@—iwg(wX—l—iL)_l)
= (X490 —¢0,L +iwg® —iwgO)
= (X,L)

O

Let us suppose we have fixed a choice of X = (X, L) in hCM™(n, g) written in
the canonical form (2.1) and again denote 0, (X, L) = (X,L). The main goal of

this section will be to relate the eigenvalues {z;} of X and the parameters x; and
#; appearing in X and L. In order to do so, it is convenient to define the rational
function

r(z) = diz log det(X — zI)

which will appear only in the next two lemmas.

n
LEMMA 5.3. The function r(z) can be written as Z where zy, are the

z—2z
=1 k

eigenvalues of X .

ProOOF. This is elementary, since any linear algebra student should know that
det(X — 2I) = [[;_,(zx — 2) and any calculus student should know that

n d n
logsz—z :Zd_ (21 — 2) sz—z
k=1

k=1

LEMMA 5.4. For any eigenvalue x; of X one can write r(x;) as:

T, w 1
r(z) =2 - =2+ —
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PROOF. First, we obtain a formula for r(z) that does not involve determinants.

d .
r(z) = - logdet(X " — 2I)
(because the determinant is unaffected by transpose)

= dilz logdet(X + g(wX +4L)~! — 21)

d
= 5 logdet(wX +iL)det(X + g(wX +iL)~ — 21I)
(because the log derivative is unaffected by constant multiples)

= dilz logdet ((wX +4iL)(X 4+ g(wX +iL)~" — zI))

(because the determinant of a product is the product of the determinants)

= di logdet (WX + L)X + gI — z(wX +iL)))
z

_ di log det (wX2 +iLX + gI — 2(wX +iL)))
z

d
= - logdet (wX? + (gE +iXL — gI) + gI — 2(wX +iL)))
z
(using the rank one relationship i[L, X| + gI = gF)
d
= - logdet (X — zI)(wX +1iL) + gF))
z

= di log (14 ge' (WX +iL) (X — zI)""e) det(X — zI) det(wX +iL)
z
(using the identity that det(A +uv') = det(A)(1 + v A~ 1u))

n

d T i —1 —1
= ElOg (1+ge' (wX +iL)" (X —2I)"e) kli[l(a:k —2)
(since det(X — zI) = [[(x; — 2z) and the other determinant is constant)
Now, define f(z) = (14 ge"(wX +4iL) (X — zI)~'e) []_, (z — 2) to be the
function whose logarithmic derivative is r(z). Clearly, r(z;) = f'(x;)/f(z;) and so
we only need to determine the numerator and denominator in this expression. We
will write each of them in terms of the elements of the vector

n"=(p - ) =ge (WX +iL)"".

Matrix multiplication yields that

n

1) = [Tar =2+ S m [ (@a —2)
aFk

k= k=1

_

and
n n
P& == l@a=2=2 m> ]I @ -2
k=1 a#k k=1  a#k ok
Upon evaluation at z = x;, we obtain

flae) =n; [[(@a — =)

aj
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and
fla)==J[@a—2) = > a+mn) [] (@s—=)).
i o Braj
Consequently,
f/(xj) 1 Mo 1
rar;) = = - — ]_ + - = + .
( j) f(xj) nj (%;jxa_xj (%;jxj_xoz

By definition, we have that n" (WX +iL) = ge. Considering only the j** column
give us that

.. gn
nj(wa; +id;) = ) ——— =y
aj "%
or equivalently that
Z - n—j(wxj +id;) — L.
(To—Z; g
atj T
Substituting this into our last expression for r(x;) we obtain the desired formula.
O

Equating the expression for r(z;) provided by the preceding two lemmas, we
determine the following identity relating the eigenvalues of X and X:

COROLLARY 5.5. Let X = (X,L) € hCM(n,g) be written in the canonical
form (2.1) and let (X,Z) = 0o, (X) € hCM(n,—g). The eigenvalues {zx} of X
satisfy

foreach j=1,... n.
We now have all of the ingredients necessary to prove the main result:

THEOREM 5.6. Let X = (X, L) € hCM™(n,~) such that X has distinct eigen-
values and
X =(X,L)=0,(X) € hCM*(n,—).
Then the particle systems Ex = {x1,...,2n} and £y = {21,...,2,} associated to
each are dual systems satisfying the equations (1.2) and (1.3).

ProoF. Without loss of generality, we may assume that (X, L) are written
in canonical form (2.1) since the statement depends only on the class of X in
hCM(n,v). Then Corollary 5.5 immediately implies (1.2) upon the substitution
9=".

To obtain (1.3) (with m = n), we apply Corollary 5.5 to X, which requires
using —+ for g, writing zj in place of xj (since these are the eigenvalues of X ) and
xy, in place of zj (since by Lemma 5.2, X is the image of X under the map D:v)'

EXAMPLE 5.7. Let n = w = v = 2 and consider the point X = (X,L) €
hCM(2,2) in canonical form given by

0 0 0 -2
X_<01) and L_<2i 0).
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Then Ex = {x1(t), z2(t)} where

(1) = % (2cos(2) + (~1)/ /10~ G eos(d) )
and so
(5.3) x1(0) = £1(0) = 2(0) = 0 and x2(0) = 1.
Computing X = 0 (X) = (X, L) we find

N 1 1 A 21 44
X:<_11> and L:(—4i0>

which are not in canonical form but satisfy i[L, X] — 2 = 2E and hence X is in
hCM(2,-2). Then €4 = {z1(t), 22(t)} where

2(t) = i (2z’ sin(2t) + 4 cos(2t) + (—1)7\/—32i sin(4t) — 38 cos(4t) + 22)
and so
(54) 2(0)=1—i 20)=1+i 2(0)=4+i and  2(0) = —4 +1i.

In agreement with the claim of Theorem 5.6, the values given in (5.3) and (5.4)
satisfy both duality equations (1.2) and (1.3).

6. Closing Remarks

Abanov et all [1] asked whether this other sort of duality of the Calogero system
in a harmonic potential might have an interpretation in terms of bispectrality as
does the action-angle duality of particle systems in all known instances. This paper
has not answered this question, but rather has taken some steps towards that goal
by recasting the problem in the language of manifolds of matrices satisfying rank
one conditions that has proved to be useful in the other situation. The main result
has been to present a closed algebraic formula associating a dual state to a large
open subset of initial states of the system. (The paper [1] does not give such a
formula, but it does give a formula for matrices in canonical form corresponding to
the dual depending on implicitly determined parameters z; and Z;. The matrices
they give are in hC' M (n,~y), whereas the ones given here are not in canonical form
and are found in hCM (n,—~). Of course, their conjugacy classes are related by
the involution F5.)

These results are encouraging and suggest that further investigation in this
regard should be undertaken. Following are some specific topics of interest which
were not considered here and speculation about how they might be addressed in
the future.

e The construction presented above always produces a dual system with
the same number of particles as the original system. In other words, this
paper considers only the case m = n. One of the most interesting things in
[1] is that they allow different numbers of particles in the original system
and its dual.

e Another interesting aspect of [1] which was not considered here is the con-
nection to soliton equations. Writing differential Lax operators and wave
functions for a soliton equation in terms of the elements of hC M (n,~) is
clearly a step that should be taken in order to address the question raised
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by Abanov, Gromov and Kulkarni regarding a possible connection to bis-
pectrality. T would like to suggest, without any evidence at this point, that
the correct approach may be to construct 2n x 2n matrices which satisfy
rank fwo conditions and have the matrices from this paper as blocks. As-
sociated to these larger matrices might be solutions to the two-component
KP hierarchy in which the duality map has a natural interpretation, as it
did in the case of action-angle duality. Moreover, considering the blocks
as being rectangular rather than square may provide a means to address
the duality between different numbers of particles.

e The construction of the dual map presented above is quite general, but not
universal. In particular, it assumes the invertibility of wX +iL. It would
be interesting to know whether this restriction is actually inherent in the
duality defined by Abanov et al, and if not how this algebraic formula
could be extended to the general case.

e The operators wX +iL are important in the general theory of the harmonic
Calogero system [1, 18]. As can be seen in the proofs of Theorem 4.2 and
Lemma 5.1, it turns out to be convenient that wX +iL = wX’ +:L’ when
(X',L') = o} (X,L) (a). There may be greater significance to the fact
that this matrix is an invariant of the dual map.

e Finally, it may also prove interesting to investigate the standard action-
angle duality and the more familiar involution (X,L) — (LT, XT") on
hCM (n,g) to determine whether they lead to any new bispectral opera-
tors.
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